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SIGNIFICANCE AND EXPLANATION

Spline approximation is often most effective when the breakpoint (knot)

sequence can be chosen suitably nonuniform. At the same time, standard spline

approximation schemes (such as least-squares approximation by splines) are so

far only known to be bounded as long as the breakpoint sequence is almost uni-

form. Any such bound is obtained (explicitly or implicitly) in terms of a

bound on the inverse of certain matrices which are banded. Any attempt at

establishing bounds for more general breakpoint sequences must therefore come

to grips with the inverses of these band matrices. The hope is the Demko's

discovery of the exponential decay of band matrix inverses will lead event-

ually to those desired bounds.

In the present report, a specific question concerning the boundedness

of cubic spline interpolation at breakpoints in terms of the local mesh ratio

leads to a description of the inverse of a biinfinite band matrix A in terms

of the behavior of the solutions of the homogeneous problem Ax = 0. This

description should be of use in the analysis of other spline approximation

schemes as well.
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WHAT IS THE MAIN DIAGONAL OF A BIINFINITE BAND MATRIX?

Carl de Boor

INTRODUCTION

The study of approximation by splines on a biinfinite knot

sequence leads to linear systems

Ax = b

with a banded biinfinite coefficient matrix A. Questions as to

the existence of A - 1 , its boundedness or its possible checker-

board nature need to be answered, and these, in turn, raise the

question of which diagonal of A may be the main diagonal.

For example, it is well known that the inverse of a finite

totally positive matrix A is checkerboard, i.e.,

-i+J A-1(i,j) > 0, all i,j

* -l

and, in particular, the entries of the main diagonal of A are

positive. One would expect the same statement to be true when

A is biinfinite, but it is not clear a priori which diagonals

of A will be positive and which negative.

Again, in one approach toward proving that the inverse of

a biinfinite totally positive matrix A is checkerboard, one

would try to show that the inverse is approximated in some

pointwise sense by the inverse of finite sections of A, whose

checkerboard pattern is then known. Now, as we will show

Sponsored in part by the United States Army under Contract No.
DAAG29-75-C-0024. Some of the work was done while the author was
a very contented and grateful guest of the SFB 72 at the University
of Bonn, Germany in the summner of 1979.



below, if there is any convergence at all, then these finite
sections are necessarily principal with respect to one fixed
diagonal of A . That diagonal then has earned the epithet
"main".

Here is an outline. In Section 1, even-order spline in-
terpolation at knots is discussed, since I was led to wonder

about the main diagonals of biinfinite matrices because of an
argument with C.A. Micchelli concerning mesh ratio restrict-

ions for that scheme. Section 2 contains a discussion of bi-
infinite band matrices, in particular some propositions re-
garding existence and character of their inverses. In the last
section, some of these results are applied to cubic spline in-
terpolation at a biinfinite knot sequence, giving me an oppor-

tunity to correct a mistake in [4].

1. MESH RATIO RESTRICTIONS
IN EVEN-ORDER SPLINE INTERPOLATION AT KNOTS

Let m$k,t be the normed linear space of bounded splines
of order k with knot sequence t = (ti) and the sup-norm.

We take the knot sequence t to be biinfinite and strictly
increasing. Also, let T be a strictly increasing biinfinite

sequence. The problem is to determine for given a .£ an f
in m$k,t with f(Ti) = ai , all i. I call this interpolation
problem correct (others have called it "poised")if it has ex-

actly one solution for every ae., i.e., if

R:mk--.X: f i f ((1 )-:

is invertible. Note that R-1  is necessarily bounded if it

exists.
This interpolation problem has received particular atten-

tion in the special case of even-order spline interpolation at

knots, i.e.,

T - t and k even

See, e.g., [61 for a recent survey. I showed in my talk [4] at

the last Bonn conference that this interpolation problem is

correct in case the global mesh ratio

Mt  :- sup Ati/At
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is finite. I also stated there without proof that, for a cor-

rect problem, the local mesh ratio

mt :=lsu Ati/At- 1 )i =l

would have to be finite, since it is possible to bound this

mesh ratio in terms of hJR-I1 . It was this claim which

Micchelli doubted when we discussed various possible suffi-

cient conditions for the correctness of the interpolation

problem last summer. Now, my claim was based on the corre-

sponding result in case of a finite knot sequence, in [3].

Here is an adaptation of the argument there to the present bi-

infinite context.

Supposing the problem correct, write the interpolant R 1 f

to the particular data sequence f := ((-) i) in terms of the

normalized B-splines of order k for t

R-if = a eNj,k

Then, from [2],

Dk1 1L.. < hRl-1. < IL

for some positive constant Dk independent of t . Now, for

any particular i ,

2(-) = [ti,t. JR-f = (R-If)' () = a _0
Ati  - _ tj+k l-tj Nj,k-i

Since (Nj,k I) forms a partition of unity and Nj,k-1 has

its support in (ti,t while E.(tirti+ 1 ) , this implies
jj+k-1 +

that

mil tj+k-1-t < DkJR-I1i-k+21_jsi at i k

and it was from this inequality that I had drawn a bound for

m in terms of JR-ll . But, actually this inequality is not

sErong enough for such a conclusion in case, e.g., tj+kl-t

is a decreasing function of j . The desired conclusion can be

drawn, though, if we are certain that the a alternate, and

alternate in the right way.

4s PROPOSITION 1. If the B-spline coefficients a of the inter-

SR'If to the data sequence f. ((i) 'alternate in

such a way that (-)a, 1 0, all J, then mt < DkIIR' •

-3- V



Proof. Under this additional assumption, we have

(-) 1+1(ij-1_) < 0 for j = i and also for j = i-k+2 (since

k is even), hence from the above

2 i-il i+l a j-a j-I
At < (-) :E tNj i-(O)j=i-k+3 tj+k-t

: 21121./min{tj+k-l-t j : i-k+3 < J < i-li

and therefore

Ati-i + Ati+l tj +k-l-tj

At < min6m < D JJR
i  -- i-k+3cj<i- 1  1

which does imply the desired result.

This leaves open the question as to when we can expect

the alternation assumption to hold. In a finite-dimensional

situation, the alternation is immediate because of the total
positivity of the coefficient matrix of the linear system

i
I ajNj,k (ti) = (-)i, all i

But the sense of the alternation depends on just what the range

of i and j here is. Specifically, if i = 1+1,...,I+n,

j - J+l, ... , J+n, then (assuming that J < I < J+k)

(.)I J Oj+j > 0 , all j .

In the biinfinite case, it is not even clear that a al-
ternates. In order to investigate this question further, we

now turn to an analysis of biinfinite band matrices.

2. THE INVERSE OF A BIINFINITE BAND MATRIX

In order to give our definition of main diagonal, we need

notation to describe sections of biinfinite matrices and their

relationship to the linear map represented by that matrix.

Let 1, J be integer intervals. Then

AI, := A 11- = (A(ii))i6ij J a

denotes the corresponding section of the biinfinite matrix A.

We can think of AIli simply as a IIIxIJI matrix. But, AI, i'

also describes the nontrivial part of the linear map

.4.



P IAP

with

=a(i) , i I( P , a ) W0 
j

More precisely, AI, is the matrix representation (with re-

spect to the canonical basis) of the linear map

PI (A Iran Pj)

and we will not distinguish between these two.

Here and below, we will use the alternative notation a(i)

for the i-th entry of the sequence a , which is consonant
with the notation A(i,j) for the (i,j)-entry of the matrix A.

DEFINITION. The bounded and boundedly invertible biinfinite

matrix A (as a map on L VZ), say) has its r-th diagonal as

main diagonal := the matrices (AI , I+r
)-i converge finitely

to A-  as I--+= , i.e., AI,I+r  is invertible for all suf-

ficiently large finite intervals I and

-Ij) = lim (A ,I+r) (i,j) , all i,j

Here, we have used the abbreviation

I+r := {i+r : ieI}

For example, suppose that both A and A-  are upper

triangular in the usual meaning of the word, i.e.,

A(i,j) A-l(i,j) = 0 for i > j

Then

i E A(i,k)A-I (k,j)
k=i -l -1

showing that (A )II = (AI I ) In this case then, diago

nal 0 is the main diagonal of A (as usual!). But now let

E be the map or matrix of the left shift,

(Ea) (i) := a(i+l) , all i

and let rE Z . Then ErA is also invertible, with inverse

A-Er. But now

(Er A) (i,j) - A(i+r,j) , (ErA)l(i,j) A-1 (i,j+r)

hence now

-5-



((ErA) ) (A ) = A-  = (ErA)-r=-r,,I1,,I-r

In other words, ErA has diagonal r as its main diagonal

(while (E rA) - I has diagonal -r as its main diagonal).

For matrices which are not triangular with triangular in-

verse, it is much more difficult to ascertain whether or not

they even have a main diagonal, let alone which diagonal it

might be. We now discuss this question in the context of band-

ed matrices.

DEFINITION. We say that the biinfinite matrix A is m-banded

if

(1) A(i,j) = 0 for j 0 [i,i+m]

(2) A(i,i)A(i,i+m) 3 0 , all i

Thus an m-banded matrix has at most m+l nonzero bands.

If A is m-banded, then, for any r , E rA also has just m+l

possibly nonzero contiguous bands and so could, with justifi-

cation, also be called m-banded. But we will use the term "m-

banded" only as described in order to suppress an additional

inessential parameter. The other assumption, viz. the nonva-

nishing of the first and last band, is a nontrivial one. It

makes certain statements simpler and is satisfied in the case

of spline interpolation at knots.

An m-banded matrix A gives rise to a linear map on M1

which we will identify with A . This map has an m-dimensional

nullspace or kernel,

Y tt = L {f e- MF Af 0}

In particular,

(3) for every i, V---*e : f t --f [i+l,i+m ] is 1-1 and onto

because of (2). Conversely, if It is an m-dimensional subspace

of 2 for which (3) holds, then there is, up to left multi-

plication by a diagonal matrix, exactly one m-banded matrix

having IL as its nullspace.

We also introduce two subspaces of I.

I :t {f C i f(i) < ®7 , m+ := dim +

" : r {ft : rim f(i) < =} , m- = dim Rt-

-6-



From now on, we assume that A is m-banded and bounded

on Z. Then the i-th column A- (.,!) of its inverse, if it

exists, would solve the linear system
Ax = ( ij)

The following proposition is therefore a first step toward

understanding the inverse of an m-banded matrix.

PROPOSITION 2. For all i, there exists exactly one L. E Z

such that AL. = (S..) if and only if )I r ye
Proof.is the kernel of A , there is at

most one solution (for any particular i) if and only if

tft-ne = Ol . Hence it is sufficient to prove that, given

uniqueness, thereis a solution for every i iff m-+m = In

For this, note that L I e satisfies ALi (6ij) iff

! (j) j<i+m L. rel -1

(4) L.(J) = , with

and
i+m

(5) - A(i,j)L i( j )  = 1
6 j=i

Here, L+ is the extension of L
Here -i ~iIii+m-1

'iijj+li+mj , respectively, to an element of It.

Now to see that m- +m+ = m implies existence of L.

note that (4) and (5) constitute a linear system

in the m+l unknowns L. Ci), ... , Li(i+m) , with the first

m-m homogeneous conditions ensuring that the extension

of Li [ii+m-l] to an element of Yt lies in I-, and the

next M-M homogeneous conditions ensuring that the extension

I+ of Li Ii+l,i+m] to an element of R lies in V+, and the

last, the only inhomogeneous, condition being (5). But if now

m +m+ = m , then (6) has as many equations as unknowns and, as

we already know that it has at most one solution, the existence

of a solution follows.

Conversely, assuming the existence of a solution for every

i consider the maps

-7-



* ] +I __n ,
€ :: a F-- E a JL.i~

j=O -

with * standing for + or - , and M m +m Then

dim ker * = m+l - dim ran Q > m+l-m *

Consequently, there exists asker + ker - \(0}. For this a,

M Z a.L 0
=0 i

since (Lj) is obviously linearly independent. On the other

hand, since

f L. . (s) , for s < i+m
L. (s) + , j=O,... ,m--i j (s) , for s > i+m

-1+j

we find

Ea.L . on .e,i+m[

M = a L++t on ]i+m,[

and therefore, by choice of a , M(s) = 0 for s < i+m and

s > i+m . This implies m > m , and therefore, since by as-

sumption r+, f- = {0}, i.e., m++m- < m, the conclusion

m + +- -- m follows.

Next, we characterize bounded invertibility of a bounded
m-banded matrix A in terms of YL.

PROPOSITION 3. A 4s boundedly invertible if and only if
jji Y= V-W+ (ii) the elements of L and IV+  decay expo-

nentially and, (iii) for each i, the matrix B. in (6) can beu'-uBll 1
chosen so that sup ie LI

i
Concerning the exponential decay, I had proved at the last

Bonn conference that, for a bounded and boundedly invertible

m-banded matrix A on some X. with p < -, there exists
const so that, for all feC and all i ,

IIf(r) lp > const A r 11,(0)11P , r=1,2,3,...

with

A :- + , K - IIAII I
8-P



and

f (r) 1= i[i+rn,i+(r+l)m- '

and an analogous statement for felt . The exponential decay

mentioned in condition (ii) of the proposition is meant in

this sense.

The proof of the necessity of the exponential decay rests

on Demko's [5] nice idea. As a footnote, I would like to re-

cord here that, in response to my talk, S.Demko, at the end of

his talk at the present conference, made the point that he had

been materially helped by a referee's report authored, as it

happens, by T. Lucas.

Finally, the proof of the necessity of the last condition

is a bit tricky.

On the other hand, the sufficiency of the three conditions

is immediate since they insure that the Li's , constructed in

Proposition 2 on the strength of (i), are Z -bounded uniformly

in i and decay exponentially, hence the matrix [...,Li,...]

is a bounded map on Z for every p , etc.p
The complete proof of Proposition 3 (and of Proposition 4

to follow) can be found in [7]. Finally, we state a necessary
and sufficient condition for such a bounded m-banded matrix A

to have a main diagonal.

PROPOSITION 4. A has diagonal r as its main diagonal if and+
only if (i) A is boundedly invertible, (ii) r = m , (iii) there

exists a positive const so that, for all large n ,

for all f~t + r. lfl 1-n,-n+m+_l]I const LI [-n,-n+m]l

And

for all fey- , lL[ [n+m++l,n+m]31 > const LI [n,n+m]ll

In effect, under these assumptions, we can construct theclnL(I) of( I  -I
column L! of (A ) for all large I as a modifica-

-1 I,I+rtion of the corresponding column Ei of A 1

M ~ + -l L. - L -L on I+r

with

-9-



L + L- = L. on I\(I+r) v(I+m)\(I+r)

and L*E It This quarantees that IL. IL while, be-

cause of the exponential decay of L , L.' -L away from-1 - y
the boundary of I+r

3. CUBIC SPLINE INTERPOLATION AT KNOTS

In this section, we establish the checkerboard pattern

for A- I in case

(7) A = (N j,4(ti))

of cubic spline interpolation at knots.

Given that the interpolation problem is correct, we now+
know that there are just three possibilities: m = 0,1,2.

Case m+=0. In this case, = , and from (4) we see that

A-1  is upper triangular. Therefore, as discussed in Section 2,

the first diagonal of A is main, i.e., diagonal 1 in our way

(7) of writing A . It follows that

(-) i+j+A-l(i,j) > 0 , all i,j

and, in particular, the solution a of Aa = ((-)i) satis-

fies (-) i+ > 0 , all i. Thus, a alternates but in the1
wrong sense if we are after bounding the local mesh ratio in
terms of 1!R-I'1 using the argument of Proposition 1. In fact,

it is not difficult to construct a knot sequence t for which

the interpolation problem is correct and for which ti-0 as

i -- -- so strongly that mt = . My statement at the last

Bonn conference ([4;p.48]) that mt < const 1R-1Il must there-
fore be qualified to exclude the case m+ = 0 and the analogous

case m+ = 2.

Case m+=l. We find it convenient to associate with the ele-

ment LCEL the nullspline

L := E L(j) N.j - j,4

for which it supplies the B-spline coefficients. We claim that

(8) LeC\{0} implies L'(ti)L"(t) > 0 , all i

Indeed, YL contains a sequence (L [i) so that

L' i](ti)L[i (ti) > 0 , hence L'Ei ] (tj)L' (ti) > 0 for j > i,

-10-



by [1]. Since Y is finite-dimensional, a properly normalized

subsequence then has a limit L for which L'(ti)L"(t i ) > 0

all i . But then, by [11,

L' (t i)L"(t i )  > 0 ,all i

IlLili+ j  > 2J1IL i  , * all j >_

with

max {}L'(tj) IL"(tj)I}

Suppose now that, by way of contradiction, M6'i-\{0} satis-

fies M' (ti)M"(t i ) < 0 for some i . Then, again by [11,

M'(tj)M"(tj) < 0 for j < i and
I li_ j  > 231 MIi  = , , . .

showing that then M' (t.) and M"(tj) both would increase

exponentially as j - , while M itself stays bounded

since M t- . This would imply that At. decreases exponent-

ially as j- -- and then, given that 2 -J1ILI > I1LI i_ j  for

j=l,2,..., L would surely also be in 31- contradicting the

fact that m = 1

One proves analogously that
(9) LE 4E%0"f0) implies L'(t i )L"(t i ) < 0 , all i

(8) and (9) imply (see [1]) that

(10) for all LCL\{0), L"(ti)L"(t i+) < 0 , all i

Next, we claim that

(11) for all Lr.I \{0), L L"(tj+2 ) < 0 , all j

For this, recall (e.g., from[2;p.270]) that f = Z.Nj,4 im-

plies

(12) a = ( ( 3-r (3-r) (T)f (r) (T)
i r<4

for any T 6(tj,tj+ 4 ), with

I(x : (t j+l-X) (t j+2-x )(tji+3-x)/3!

t Since L = E Lj Nj,4 , we then get

L. " )L Ct) - i Ct L"- = (j+ +i (j+ tj+ )

while "(t+) > 0 > '(tj+ 1 ) . Therefore, with (8),

" '" -ii-



LjL" (tj+ I ) = 4i"(tj+l)L' (tj+l)L"(tj+ l )  -

'(tj+ I ) [L" (tj+l ) ] > 0

if L1C\{0}, and (10) now finishes the proof of (11) for
this case. The case LE C+\{0} uses (12) with T = tj+ 3  in-

stead.

Finally, let now L be one of the columns of A -

-1
L = A (-,i)

+

say. Since m- = m = 1, we have

L-(j), for j < i+2
(13) L(j) =

13 (j), for j > i

with neither L- nor L+  just 0 . Consequently, by (10) and
(11), L alternates (strictly) and, as to the sense of that

alternation, we have from (12) (with j = i-2) that

A-I(i-2,i) =v" (t i_l)L (t i-1) - V (ti-1) "(t i-1)

= .(t i+1 )L, (t i+ ) - V, (ti+)L"(ti+1)

while, from (13), (8) and (9),

Ve"(t i_l ) > 0 > %P'(t i_l  L' (t i.1)L"(t i_I ) > 0

"ti+ l ) l V'(ti+ I ) < 0 , L'~ i+L"(t~

We conclude that

sign A-l(i-2,i) = sign L"(t 1  sign L"(t .+)

But this implies that A- 1 (i-2,i) > 0 , since the contrary as-
sumption would give L'(t:) > 0 > L'(t + (since L(t 1), an

( i5
impossibility.

In conclusion, if m- = m+ = 1 , then

(14) (-)i+JA-l(i,j) > 0 , all i,j,

and, in particular, the solution of the linear system Aa =

((-)i) does satisfy the condition (-)i . > 0 , all i, needed1
in the argument for the finiteness of the local mesh ratio.

Note that we proved (14) here without recourse to finite

sections. Even in this simple case, I still do not know whether

the matrix A has a main diagonal (though I don't think it

would be very hard to proveS

-12-
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